INSACOG: Indian SARS-CoV-2 Genomics Consortium

Inter-ministerial consortium of 28 Laboratories

Ascertain Status of new SARS-Cov-2 variants

B.1.1.7 (alpha), B.1.351 (beta), P2 (gamma) B.1.617.2 (delta) variants identified

Hospital Network for clinical correlation

Sequencing of infection breakthrough

Sewage surveillance

More than 45000 samples processed and 36,000 samples sequenced with approx. 50% variants of concern noted across the country
SARS-CoV-2 Variants of Concern (VoC)

A SARS-CoV-2 VoC is associated with one or more of the following changes at a degree of global public health significance:

- Increase in transmissibility or detrimental change in COVID-19 epidemiology; or
- Increase in virulence or change in clinical disease presentation; or
- Decrease in effectiveness of public health and social measures or available diagnostics, vaccines, therapeutics

- Alpha
 - B.1.1.7
- Beta
 - B.1.351
- Gamma
 - P.1
- Delta
 - B.1.617.2
SARS-CoV-2 VoCs circulating globally: SPIKE Gene Mutations

Alpha
- 69-70 del
- 69-70 del
- N501Y
- A570D, P681H, S982A
- D614G, T716I, D1118H

Beta
- D80A
- 242-245 del
- K417N
- D614G
- R246I
- E484K
- A701V

Gamma
- L18F
- D138Y
- K417T
- D614G
- T1027I
- E484K
- A701V
- H655Y
- V1176F
- P26S
- N501Y
- A570D
- P681H
- S982A

Delta
- T19R
- DEL 157-158
- R158G
- L452R
- T478K
- D614G
- P681R
- D950N
SARS-CoV-2 Variants of Interest (VoI)

A SARS-CoV-2 isolate is a Variant of Interest (VoI) if, compared to a reference isolate, its genome has mutations with established or suspected phenotypic implications, and either:

- It has been identified to cause community transmission/multiple COVID-19 cases/clusters, or has been detected in multiple countries; OR

- Assessed to be a VoI by WHO in consultation with the WHO SARS-CoV-2 Virus Evolution Working Group.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epsilon</td>
<td>B.1.427/ B.1.429</td>
</tr>
<tr>
<td>Zeta</td>
<td>P.2</td>
</tr>
<tr>
<td>Eta</td>
<td>B.1.525</td>
</tr>
<tr>
<td>Theta</td>
<td>P.3</td>
</tr>
<tr>
<td>Iota</td>
<td>B.1.526</td>
</tr>
<tr>
<td>Kappa</td>
<td>B.1.617.1</td>
</tr>
<tr>
<td>Lambda</td>
<td>C.37</td>
</tr>
</tbody>
</table>
B.1.617: High levels in Maharashtra, Bengal, Delhi, Karnataka / Appearing in multiple states

B.1.617 has E484Q (not R)/T478K, L452R and P681R in addition to D614G.

B.1.617.1 has both L452R and E484Q along with P681R

B.1.617.2 don’t have E484Q, but T478K alongwith P681R

B.1.618 In addition to E484K, it has two deletions, Y145 and H146 in Spike. D614G is also present.

B.1.617 is evolving further into three sub-lineages as it accumulates new mutations in spike and other genes.
Distribution of major lineages in different states in India
(B.1.617.2 is over-enriched in Indian sequences)
B.1.617 lineage sequences were overrepresented March onwards
Sudden change in the landscape of VOCs in India from Feb-March onwards
Delta + K417N
AY.1 lineage (B.1.617.2.1)

- Characterized by the acquisition of K417N genetic variant in the background of Variant of Concern Delta (B.1.617.2)
- Lysine (K) > Asparagine (N) at 417th amino acid position in the Spike protein
- K417N is of note, and is also present in the Variant of Concern Beta (B.1.351)
 - Currently, the variant frequency is low in India
 - Cases with Delta plus has been mostly reported from Europe, Asia and America
 - No functional evidence of AY.1’s role in immune escape, disease severity or increased transmissibility as yet
 - Currently only 40 cases in India in 10 different states
Delta + K417N lineage of SARS-CoV-2
(called as AY.1)

- Delta Plus is a variant of interest, but not a variant of concern as on date
- Characterized by the Spike K417N mutation which is otherwise present in the Beta VoC
- K417N corresponds to change of amino acid lysine (K) to asparagine (N)
- Delta plus is resistant to the COVID 19 monoclonal antibody treatment (like Imdevimab, Casirivimab)